Image from Google Jackets

Проектування системи автентифікації біометричного захисту на основі методу k-середніх / Я. В. Возний, М. А. Назаркевич, В. В. Грицик

За: Інтелектуальна відповідальність: Вид матеріалу: Комп’ютерний файлКомп’ютерний файлISSN:
Тематика(и): Електронне місцезнаходження та доступ: Available additional physical forms: У: Кібербезпека: освіта, наука, техніка : електронне наукове видання / Київський університет імені Бориса Грінченка 2021, N 12 С. 85-95;Зведення: Розглянуто метод біометричної ідентифікації, призначений для забезпечення захисту конфіденційної інформації. Запропоновано метод класифікації біометричних відбитків за допомогою машинного навчання. Подано один із варіантів розв'язку задачі ідентифікації біометричних зображень на основі алгоритму к-середніх. Було створено позначені зразки даних для процесів навчання та тестування. Для встановлення особистості використовувались біометричні дані відбитків пальців. Нове сканування відбитків пальців, яке належить певній особі, порівнюється з даними, що зберігаються для цієї особи. Якщо вимірювання збігаються, твердження про те, що особа пройшла ідентифікацію, відповідає дійсності. Експериментальні результати вказують, що метод k-середніх є перспективним підходом до класифікації відбитків пальців. Розвиток біометрії призводить до створення систем безпеки з кращим ступенем розпізнавання і з меншою кількістю помилок, ніж системабезпеки на традиційних носіях інформації. Машинне навчання проводили з використанням ряду зразків із відомої біометричної бази даних, а перевірку / тестування проводили із зразками з тієї самої бази даних,які не були включені до набору навчальних даних. Для встановлення особистості використовувались біометричні дані відбитків пальців на основі вільдоступної бази NIST Special Database 302, та показано результати навчання. Нове сканування відбитків пальців, яке належить певній особі, порівнюється з даними, що зберігаються для цієї особи. Якщо вимірювання збігаються, твердження про те, що особа пройшла ідентифікацію, відповідає дійсності.Система машинного навчання побудована на модульній основі, шляхом формування комбінацій окремих модулів бібліотека scikit-learnу середовищі python.
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Розглянуто метод біометричної ідентифікації, призначений для забезпечення захисту конфіденційної інформації. Запропоновано метод класифікації біометричних відбитків за допомогою машинного навчання. Подано один із варіантів розв'язку задачі ідентифікації біометричних зображень на основі алгоритму к-середніх. Було створено позначені зразки даних для процесів навчання та тестування. Для встановлення особистості використовувались біометричні дані відбитків пальців. Нове сканування відбитків пальців, яке належить певній особі, порівнюється з даними, що зберігаються для цієї особи. Якщо вимірювання збігаються, твердження про те, що особа пройшла ідентифікацію, відповідає дійсності. Експериментальні результати вказують, що метод k-середніх є перспективним підходом до класифікації відбитків пальців. Розвиток біометрії призводить до створення систем безпеки з кращим ступенем розпізнавання і з меншою кількістю помилок, ніж системабезпеки на традиційних носіях інформації. Машинне навчання проводили з використанням ряду зразків із відомої біометричної бази даних, а перевірку / тестування проводили із зразками з тієї самої бази даних,які не були включені до набору навчальних даних. Для встановлення особистості використовувались біометричні дані відбитків пальців на основі вільдоступної бази NIST Special Database 302, та показано результати навчання. Нове сканування відбитків пальців, яке належить певній особі, порівнюється з даними, що зберігаються для цієї особи. Якщо вимірювання збігаються, твердження про те, що особа пройшла ідентифікацію, відповідає дійсності.Система машинного навчання побудована на модульній основі, шляхом формування комбінацій окремих модулів бібліотека scikit-learnу середовищі python.

Оригінал запису за посиланням

https://kubg.libs.net.ua/kubg_recs/0000083753.txt

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.